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= There is a tradeoff between performance and energy
efficiency (top500 != green500)

= Most energy efficient systems use NVIDIA GPUs as
accelerators

» Today’'s HPC systems are cluster systems!

= According to Exascale Computing Study: Most energy is
spent for communication!

= Top500, www.top500.0rg, June 2014
= Green500, www.qgreen500.orq, June 2014

» Exascale Computing Study: Technology Challenges in Achieving
Exascale Systems, September 28, 2008
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= Accelerators (e.g. GPUS) are widely used, but

= can only excel in performance when data can be held in
on-chip memory (scarce resource)

= are deployed in cluster systems, requiring
communication to work on large amounts of data

= cannot control communication and need return control
flow to the CPU

= are limited in performance due to PCle data copies

« What we need is
= a direct communication path between distributed GPUs
= getting rid of PCle copies and context switches
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@ Background

« Why GPUs?
= Massively parallel (demanded by many applications)
= Power efficient
» [ntel Xeon E5-2687W: 1.44 GFLOPs/W
= NVIDIA K20 GPU: 14.08 GFLOPs/W
= NVIDIA Tegra K1: 32.60 GFLOPs/W (only GPU)
= Drawbacks
= Memory is a scarce resource
= PCle copies
» Communication is still CPU controlled
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@ GPU Computing: execution model

=« CUDA (Compute Unified Device Architecture)

= Kernels define instructions that are executed by every
thread (SIMT = Single Instruction Multiple Threads)

» Threads are organized in blocks, forming a grid

» Blocks are tightly bound to SMs (about 2 per SM
concurrently)

=32 Threads (warp) are executed in parallel

=« Memory access latencies are tolerated by scheduling
thousands of threads (hardware multi-threading)

» Synchronization only within blocks
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= Vendors provide software APls to obtain power information
= Intel: CPU, DRAM power provided by RAPL
= NVIDIA: NVML library provide power information

= Network power can be assumed to be static (no dynamic
link on and off switching and embedded clock)

= \We implemented a python framework
= start application

= poll RAPL and NVML to obtain power information during
run time of application

= write results to disk and create graphs
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GPU-centric communication
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« Communication is tailored for CPUs
» Message Passing Interface (MPI) for cluster systems
= But: there is no MPI on GPUs

= Optimizations:
» GPUDirect RDMA (in theory)
= Host memory staging copies
= Pipelining (cudaMemcpy/MPI_Send)

MPI_Send

network

PCle | cudaMemcpy PCle cudaMemcpy
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@ Direct GPU communication path

= Bypass the CPU and communicate directly
= GPU controls network hardware

= No context switches are necessary, reducing latency and
iImproving energy efficiency

PCle PCle
communication
network

CPU-controlled | GPU-controlled
GGAS X

GPU RMA X
DCGN X
MVAPICH-GPU X
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= |dea: global address space for GPUs
= Memory can be accessed by every other GPU
» Communication inline with execution model
= thread-collaborative
= control flow remains on the GPU
= Global barrier enables synchronization

Global Address Space (GAS)

GPU1 GPU2

~_ X~

memory access
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PCle PCIe Network PCle PCIe

network package write data to GPU memory

store to GAS

VVYVYVVYVYYVYY

VYVVYVYVYYVYY
VYVVYVVYYVYY

n Computation :x__ Possible overlap
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» EXTOLL interconnect is used

= research project at Heidelberg University

=company has been founded

= still FPGA based (157MHz), ASIC (~800MHz) under test
» Functional unit to span global address spaces (SMFU)

= PCle BAR is mapped to user space

= incoming memory transactions are forwarded and
completed on target side
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Energy analysis
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= We implemented and measured basic microbenchmarks
= bandwidth
= |atency
= barrier (synchronization costs)
» Benchmarks are implemented with
» CPU-tailored communication: MPI+CUDA
» Direct GPU communication: GGAS

= \We introduce new metric: Joule / word of data transfers

» The whole system is considered and not only the network
link energy consumption
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» Simple streaming bandwidth test

» GGAS:
= CUDA kernel launch
= within kernel: write data to remote GPU
= finish

« CUDA+MPI:
= memory copy from GPU to CPU memory
= MPI send (respective receive on target side)
= On target side: memory copy from CPU to GPU memory
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= ping-pong test to determine half-round trip latency

« GGAS:
= CUDA kernel launch
= ping: write data to remote GPU and wait for response
= pong: wait for data and write response to remote GPU
= finish

« CUDA+MPI:

= ping: memory copy to CPU, then MPI Send, followed by a
Receive and memory copy to the GPU

= pong: MPI Receive, memory copy to the GPU and back, MPI
send for the response
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@ Barrier

= [ he barrier is called several times

« GGAS:
=« CUDA kernel launch
= call barrier plenty of times
= finish

« CUDA+MPI:
« dummy kernel launch (to consider context switches)
« MPI barrier call
= repeat
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@ Power consumption

CPU GPU DRAM Total

Bandwidth GGAS 26.86 47.05 3.99 77.9
MPI 43.36 48.86 10.11  102.33

Ping-pong GGAS 2995  52.58 5.26 87.79
MPI 43.25 48.45 8.07 99.77

Barrier GGAS 18.76  56.68 4.33 79.77
MPI 3997 51.18 8.48 99.63

= Numbers refer to average power consumption over all

measured message sizes
= CPU power is always lower for GGAS
=« GPU power about the same
= Total power savings from 10W to 15W
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Conclusion & Future Work
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@ Conclusion

« We implemented and analyzed three microbenchmarks
regarding energy per word of data transfers.

» GPU-centric communication shows improved energy

efficiency

» bandwidth: 50.67% energy savings ; 2.42x performance
= |[atency: 85.01% energy savings ; 6.96x performance
= barrier: 67.31% energy savings ; 2.28x performance

= This is due to two aspects:
= performance: context switches increase latency

= power consumption: context switches prevent the CPU
from entering power saving states
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=« GPU-centric communication is superior in performance
and energy efficiency

= |t is more energy efficient to communicate larger
messages instead of very small ones (aggregating
messages can be an option to improve energy efficiency)

» Synchronization is more energy efficient when it does not
require context switches

= energy/word metric characterizes overall communication
efficiency (including source and sink processors), and not
only the physical link implementation (energy/bit metric)
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= Analysis of the impact of communication methods on
application performance / energy consumption

« Communication library for GPUs including

» thread-collaborative communication

= one-sided communication (offloading to NIC)

= collective operations (reduce, all-to-all, scatter, gather)
= Exploration of further optimizations including simulation

= Power and performance models including CPU, GPU
and network
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Thank you for your attention !
Q&A
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