

GPU-centric communication for improved efficiency

Benjamin Klenk^{*}, Lena Oden[†], Holger Fröning^{*}

Heidelberg University, Germany

[†]Fraunhofer Institute for Industrial Mathematics, Germany

GPCDP Workshop @ Green Computing Conference 2014 November 3, 2014, Dallas, TX, USA

Green500 (June 2014)

Rank	GFLOPS/W	TFLOPS	System	Power (kW)	TOP500 Rank
1	4.39	151,79	TSUBAME-KFC 1U-4GPU Cluster Intel CPU & NVIDIA K20x, IB	34.58	437
2	3.63	191.10	Wilkes (Dell) Intel CPU & NVIDIA K20, IB	52.62	201
3	3.52	277.10	HA-PACS (Cray) Intel CPU & NVIDIA K20x, IB	78.77	165
4	3.46	253.60	Cartesius Accelerator Island Intel CPU & NVIDIA K40m, IB	44.40	421
5	1.75	5,587.00	Piz Daint (Cray) Intel CPU & NVIDIA K20x, Aries	1,753.66	6

Motivation

- There is a tradeoff between performance and energy efficiency (top500 != green500)
- Most energy efficient systems use NVIDIA GPUs as accelerators
- Today's HPC systems are cluster systems!
- According to Exascale Computing Study: Most energy is spent for communication!
- *Top500*, <u>www.top500.org</u>, June 2014
- Green500, <u>www.green500.org</u>, June 2014
- Exascale Computing Study: Technology Challenges in Achieving Exascale Systems, September 28, 2008

Motivation

- Accelerators (e.g. GPUS) are widely used, but
 - can only excel in performance when data can be held in on-chip memory (scarce resource)
 - are deployed in cluster systems, requiring
 communication to work on large amounts of data
 - cannot control communication and need return control flow to the CPU
 - are limited in performance due to PCIe data copies
- What we need is
 - a direct communication path between distributed GPUs
 - getting rid of PCIe copies and context switches

UNIVERSITÄT HEIDELBERG

Outline

- Background
- GPU-centric communication
- Energy analysis
- Conclusion
- Future Work

UNIVERSITÄT HEIDELBERG

Background

- Why GPUs?
 - Massively parallel (demanded by many applications)
 - Power efficient
 - Intel Xeon E5-2687W: 1.44 GFLOPs/W
 - NVIDIA K20 GPU: 14.08 GFLOPs/W
 - NVIDIA Tegra K1: 32.60 GFLOPs/W (only GPU)
- Drawbacks
 - Memory is a scarce resource
 - PCle copies
 - Communication is still CPU controlled

GPU Computing: architecture

GPU Computing: execution model

- CUDA (Compute Unified Device Architecture)
- Kernels define instructions that are executed by every thread (SIMT = Single Instruction Multiple Threads)
- Threads are organized in blocks, forming a grid
- Blocks are tightly bound to SMs (about 2 per SM concurrently)
- 32 Threads (warp) are executed in parallel
- Memory access latencies are tolerated by scheduling thousands of threads (hardware multi-threading)
- Synchronization only within blocks

How do we measure power/energy?

- Vendors provide software APIs to obtain power information
 - Intel: CPU, DRAM power provided by RAPL
 - NVIDIA: NVML library provide power information
 - Network power can be assumed to be static (no dynamic link on and off switching and embedded clock)
- We implemented a python framework
 - start application
 - poll RAPL and NVML to obtain power information during run time of application
 - write results to disk and create graphs

GPU-centric communication

State-of-the-art

- Communication is tailored for CPUs
- Message Passing Interface (MPI) for cluster systems
- But: there is no MPI on GPUs

Direct GPU communication path

- Bypass the CPU and communicate directly
- GPU controls network hardware
- No context switches are necessary, reducing latency and improving energy efficiency

Examples	CPU-controlled	GPU-controlled	
GGAS		X	
GPU RMA		X	
DCGN	X		
MVAPICH-GPU	X		

- Idea: global address space for GPUs
- Memory can be accessed by every other GPU
- Communication inline with execution model
 - thread-collaborative
 - control flow remains on the GPU
- Global barrier enables synchronization

GGAS

- EXTOLL interconnect is used
 - research project at Heidelberg University
 - company has been founded
 - still **FPGA** based (157MHz), **ASIC** (~800MHz) under test
- Functional unit to span **global address spaces** (SMFU)
 - PCIe BAR is mapped to user space
 - incoming memory transactions are forwarded and completed on target side

Energy analysis

UNIVERSITĀT HEIDELBERG

Benchmarks

- We implemented and measured basic microbenchmarks
 - bandwidth
 - latency
 - barrier (synchronization costs)
- Benchmarks are implemented with
 - CPU-tailored communication: MPI+CUDA
 - Direct GPU communication: GGAS
- We introduce new metric: **Joule / word** of data transfers
- The whole system is considered and not only the network link energy consumption

Bandwidth

Simple streaming bandwidth test

- GGAS:
 - CUDA kernel launch
 - within kernel: write data to remote GPU
 - finish
- CUDA+MPI:
 - memory copy from GPU to CPU memory
 - MPI send (respective receive on target side)
 - On target side: memory copy from CPU to GPU memory

Bandwidth

UNIVERSITÄT HEIDELBERG

Latency

ping-pong test to determine half-round trip latency

■ GGAS:

- CUDA kernel launch
- ping: write data to remote GPU and wait for response
- pong: wait for data and write response to remote GPU
- finish

CUDA+MPI:

- ping: memory copy to CPU, then MPI Send, followed by a Receive and memory copy to the GPU
- pong: MPI Receive, memory copy to the GPU and back, MPI send for the response

Latency

Barrier

The barrier is called several times

- GGAS:
 - CUDA kernel launch
 - call barrier plenty of times
 - finish
- CUDA+MPI:
 - dummy kernel launch (to consider context switches)
 - MPI barrier call
 - repeat

Barrier

Power consumption

		CPU	GPU	DRAM	Total
Bandwidth	GGAS	26.86	47.05	3.99	77.9
	MPI	43.36	48.86	10.11	102.33
Ping-pong	GGAS	29.95	52.58	5.26	87.79
	MPI	43.25	48.45	8.07	99.77
Barrier	GGAS	18.76	56.68	4.33	79.77
	MPI	39.97	51.18	8.48	99.63

- Numbers refer to average power consumption over all measured message sizes
- CPU power is always lower for GGAS
- GPU power about the same
- Total power savings from 10W to 15W

Conclusion & Future Work

Conclusion

- We implemented and analyzed three microbenchmarks regarding energy per word of data transfers.
- GPU-centric communication shows improved energy efficiency

■ bandwidth: 50.67% energy savings; 2.42x performance

■ latency: 85.01% energy savings; 6.96x performance

barrier: 67.31% energy savings; 2.28x performance

- This is due to two aspects:
 - performance: context switches increase latency
 - power consumption: context switches prevent the CPU from entering power saving states

- GPU-centric communication is superior in performance and energy efficiency
- It is more energy efficient to communicate larger messages instead of very small ones (aggregating messages can be an option to improve energy efficiency)
- Synchronization is more energy efficient when it does not require context switches
- energy/word metric characterizes overall communication efficiency (including source and sink processors), and not only the physical link implementation (energy/bit metric)

Future Work

- Analysis of the impact of communication methods on application performance / energy consumption
- Communication library for GPUs including
 - thread-collaborative communication
 - one-sided communication (offloading to NIC)
 - collective operations (reduce, all-to-all, scatter, gather)
- Exploration of further optimizations including simulation
- Power and performance models including CPU, GPU and network

Thank you for your attention!

Q&A

References

- [1]Top500, www.top500.org, June 2014
- [2] Green500, www.green500.org, June 2014
- [3] Exascale Computing Study: Technology Challenges in Achieving Exascale Systems, September 28, 2008
- [4] Oden, L.; Froning, H., "GGAS: Global GPU address spaces for efficient communication in heterogeneous clusters," Cluster Computing (CLUSTER), 2013 IEEE International Conference
- [5] Stuart, J.A; Owens, J.D., "Message passing on data-parallel architectures," Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on , vol., no., pp.1,12, 23-29 May 2009
- [6] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda, Efficient Inter-node MPI Communication using GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs Int'l Conference on Parallel Processing (ICPP '13), October 2013., October 2013
- [7] Holger Fröning and Heiner Litz, Efficient Hardware Support for the Partitioned Global Address Space, 10th Workshop on Communication Architecture for Clusters (CAC2010), co-located with 24th International Parallel and Distributed Processing Symposium (IPDPS 2010), April 19, 2010, Atlanta, Georgia.
- [8] Benjamin Klenk, Lena Oden, Holger Fröning, Analyzing Put/Get APIs for Thread-Collaborative Processors, Workshop on Heterogeneous and Unconventional Cluster Architectures and Applications (HUCAA) co-located with Internation Conference on Parallel Processing (ICPP2014), September 12, 2014, Minneapolis, Minnesota