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Abstract. We have noted that the local minima problem in the back-
propagation algorithm is usually caused by update disharmony between
weights connected to the hidden layer and the output layer. To solve
this problem, we propose a modified error function with added terms.
By adding one term to the conventional error function, the modified
error function can harmonize the update of weights connected to the
hidden layer and the output layer. Thus, it can avoid the local minima
problem caused by such disharmony. Moreover, some new learning pa-
rameters introduced for the added term are easy to select. Simulations
on the modified XOR problem have been performed to test the validity
of the modified error function.

1 Introduction

We have noted that many local minima difficulties in the backpropagation learn-
ing for feedforward neural network are closely related to the neuron saturation
in the hidden layer. Once such saturation occurs, neurons in the hidden layer
will lose their sensitivity to input signals, and the propagation of information
is blocked severely [1]. In some cases, the network can no longer learn [2]. The
same phenomenon was also observed and discussed by Andreas Hadjiprocopis
[1], Christian Goerick [2], Simon Haykin [3] and Wessels et al. [4].

In this paper, we explain this phenomenon as the weights update dishar-
mony of between hidden and output Layers and propose a robust modified error
function for the backpropagation algorithm in order to avoid the local minima
problem that occurs due to neuron saturation in the hidden layer. Since a three-
layered network is capable of forming arbitrarily close approximation to any
continuous nonlinear mapping [5], our discussion will be limited to three-layered
networks. To demonstrate the efficiency of the modified error function, we apply
it to the backpropagation learning and conduct the simulation on the modified
XOR problem. Furthermore, we compare the results with those of the backprop-
agation algorithm and simulated annealing method using the conventional error
function.
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2 Weights Update Disharmony

The backpropagation algorithm is a gradient descent procedure used to minimize
an objective function (error function) E. The most popularly used error function
is the “sum-of-squares” that is given by

E =
1
2

P∑

p=1

J∑

j

(tpj − opj)2, (1)

where P is the number of training patterns, tpj is the target value (desired
output) of the j-th component of the outputs for the pattern p, opj is the output
of the j-th neuron of the actual output pattern produced by the presentation of
input pattern p, and J is the number of neurons in the output layer. To minimize
the error function E, the backpropagation algorithm uses the following delta rule:

∆wji = −η
∂E

∂wji
, (2)

where wji is the weight connected between neurons i and j and η is the learning
rate. From the above equations, we can see that there is only one term related to
the neuron outputs in the output layer. Weights are updated iteratively to make
the neurons in the output layer approximate to their desired values. However,
the conventional error function does not consider the neuron behavior in the
hidden layer and what value should be produced in the hidden layer.

Usually, the activation function of a neuron is given by a sigmoid function:

f(x) =
1

1 + e−x
. (3)

There are two extreme areas that are called the saturated portion of the sig-
moidal curve. If weights connected to the hidden layer and the output layer
are updated so inharmoniously that all the hidden neurons’ outputs are driven
rapidly into the extreme areas before the output neurons start to approximate
to the desired signals, no weights connected to the hidden layer will be modi-
fied even though the actual outputs in the output layer are far from the desired
outputs. Therefore, the local minima problem occurs.

3 Modified Error Function

To overcome such a problem, and furthermore, to avoid the local minima caused
by such disharmony, the neuron outputs in the output layer and those in the
hidden layer should be considered together during the iterative update proce-
dure. Motivated by this, we have proposed modified error function in [6]. The
modified error function is given by:

Enew =
1
2

P∑

p=1

J∑

j

(tpj − opj)2 +
1
2

P∑

p=1

(
J∑

j

(tpj − opj)2)(
H∑

j

(ypj − 0.5)2)

= EA + EB . (4)
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where,
∑H

j (ypj − 0.5)2 can be defined as the degree of saturation in the hidden
layer for pattern p. ypj is the output of the j-th neuron in the hidden layer, and
H is the number of neurons in the hidden layer. Using the above error function
as the objective function, the update rule of both the weight wji and threshold
θj can be given as:

∆wji = −ηA
∂EA

∂wji
− ηB

∂EB

∂wji
, (5)

and
∆θj = −ηA

∂EA

∂θj
− ηB

∂EB

∂θj
, (6)

where ηA and ηB are the learning rates for EA and EB , respectively. It has been
proven that this modified error function could effectively help the network avoid
some local minima problems [6]. However, the selection of learning rates of EA

and EB often is a very difficult and is problem-dependent. That’s, given a value
of ηA, both an over-small and over-large value of ηB will damage the learning.
The setting of the learning rates ηA and ηB is a difficult and subtle task. Thus,
we propose a novel modified error function that is defined as follows:

Enew =
1
2

P∑

p=1

J∑

j

(tpj − opj)2 + (
1
2

P∑

p=1

H∑

j

(ypj(W ) − 0.5)2

+
1
2

P∑

p=1

H∏

j

(ypj(θj) − 0.5)2)

= EA + EB . (7)

We can see that the new error function also consists of two terms—the first term
is the conventional error function:

EA =
1
2

P∑

p=1

J∑

j

(tpj − opj)2, (8)

and the second one is the added term concerning the hidden layer:

EB =
1
2

P∑

p=1

H∑

j

(ypj(W ) − 0.5)2 +
1
2

P∑

p=1

H∏

j

(ypj(θj) − 0.5)2. (9)

The added term also consists of two terms:

EB = EB(W ) + EB(Θ), (10)

where EB(W ) is the added error function of the weights connected to the hidden
layer, and EB(Θ) is the added error function of the threshold parameters of
hidden layer neurons, respectively. We redefine the added term EB and use
different forms for the weights and thresholds since we found it is excellent
trade-off for both the convergence speed and global optimization.
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The derivatives of the added term EB corresponding the weights and thresh-
olds are computed as deferent forms. Given a pattern p, for the weights connected
to the hidden layer, ∂Ep

B

∂wji
is easily obtained as follows:

∂Ep
B

∂wji
=

∂Ep
B(W )

∂wji
= (ypj − 0.5)

∂ypj

∂wji
= (ypj − 0.5)f ′(·)xpi, (11)

where xpi is the i-th input for pattern p since we use the network with only one
hidden layer. For the thresholds of the neurons in the hidden layer, ∂Ep

B

∂θj
can be

computed as follows:

∂Ep
B

∂θji
=

∂Ep
B(Θ)
∂θj

= (ypj − 0.5)
∂ypj

∂θj
(
∏

h�=j

(yph − 0.5)2)

= −(ypj − 0.5)f ′(·)(
∏

h�=j

(yph − 0.5)2). (12)

Since this added term is used to keep the degree of saturation of the hidden
layer small when EA is large, the effect of term EB should be diminished and
will eventually become zero while the output layer approximates to the desired
signals. Therefore, for training pattern p, the learning rate ηB at step t + 1 is
adapted according to the following rule:

ηp
B(t + 1) = Ep

A(t)ηB(0), (13)

where, ηB(0) is the initial value of the learning rate ηB . It is set to the same
value for all patterns. For the novel modified error function, the selection of
learning rates ηA and ηB is much easier. Generally, if ηB(0) < ηA is selected, the
performance of the network is not affected too much with various ηB .

4 Simulation

In order to verify the effectiveness of the modified error function, we applied it
to the backpropagation algorithm (denoted by “BP+Added-terms”). Then the
modified XOR problem was used for simulation. For comparison, we also per-
formed the backpropagation algorithm (denoted by “BP”) and a global search
technology—the simulated annealing method [7] (denoted by “SA”) with the
conventional error function. Here, weights and thresholds were initialized ran-
domly from (-1.0, 1.0). Two aspects of the training algorithm performance, “suc-
cess rate” and “training speed”, were assessed for algorithm. The upper limit
epochs for the BP+Added-terms and BP were set to 10,000.

The modified XOR problem is different from the classical XOR problem be-
cause one more pattern is included (that is, inputs=(0.5,0.5), teacher signal=1.0)
such that a unique global minimum exists. Furthermore, several local minima ex-
ist simultaneously in this problem [8]. We used the 2-2-1 neural network to solve
this problem. To show how the BP+Added-terms can avoid the local minima,
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Fig. 1. Comparison of learning processes with local minima for the modified XOR
problem between BP+Added-terms and BP: (a) conventional error function (EA) vs.
epochs and (b) degree of saturation in the hidden layer of all patterns vs. epochs

we compared a typical learning process of BP+Added-terms with that of BP in
the case where there is the local minimum in the learning of BP. In Fig.1, the
conventional error function (EA) and the degree of saturation in the hidden layer
of overall patterns are plotted as a function of epochs for both methods. We can
see that the BP converged into a local minimum, while the degree of saturation
in the hidden layer increased continually until it reached about 0.114. Mean-
while, the BP+Added-terms method avoided the local minimum and trained
the network successfully about 900 epochs when the degree of saturation in the
hidden layer was effectively neutralized by the modified error function. Table 1
shows the experimental results of the three methods based on 100 runs of this
problem. For the BP, different learning rates η = 0.3, η = 0.5, and η = 1.0 were
used. ηB(0) = ηA = η was selected for the BP+Added-terms. The table shows
that the backpropagation algorithm could obtain successful solutions for almost
every run using the modified error function, while many failures in convergence
to the global solution occurred both in the backpropagation algorithm and the
simulated annealing method using the conventional error function. Although the
average number of epochs of BP+Added-terms was a bit more than that of BP
when η = 0.3 was used, it was almost the same as that of the BP when η = 0.5
was selected. Moreover, it was much less than those of the SA in all cases and
BP in the case of η = 1.0. These results indicate that the proposed method could
efficiently avoid the local minima for this problem.

5 Conclusions

In this paper, we proposed a modified error function with the added terms for
the backpropagation algorithm to harmonize the update of weights connected to
the hidden layer and those connected to the output layer. Therefore, local min-
ima problems due to such disharmony could be avoided without much additional
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Table 1. Experimental results for modified XOR problem

Methods Success Rate Average Number of Epoch

(η = 0.3) 69% 3582

BP (η = 0.5) 70% 2181

(η = 1.0) 58% 1106

(η = 0.3) 60% 7164

SA (η = 0.5) 85% 4811

(η = 1.0) 93% 3593

(ηB(0) = ηA = 0.3) 99% 4157

BP+Added-terms (ηB(0) = ηA = 0.5) 99% 2257

(ηB(0) = ηA = 1.0) 97% 904

computation and change in the network topology. And, the new learning param-
eters for the added term is not difficult to select. Finally, simulations performed
on a benchmark problem demonstrated that the performance of the backprop-
agation algorithm was greatly improved by using the modified error function.
More analysis on large problems is still required.
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