
System Model

A cluster is characterized by a set P = {p1, p2,..., pm} of processors connected by high speed

interconnect. It is assumed that the computational nodes are homogeneous in nature, meaning

that all processors are identical in their capabilities. Similarly, the underlying interconnection is

assumed to be homogeneous and, thus, communication overhead of a message with fixed data

size between any pair of nodes is considered to be the same. Each node communicates with other

nodes through message passing, and the communication time between two precedence

constrained tasks assigned to the same node is negligible. Parallel applications with a set of

precedence-constrained tasks can be represented in form of a Directed Acyclic Graph (DAG). a

parallel application running in clusters is modeled as a vector (V, E), where V = {v1, v2, ..., vn}

represents a set of precedence constrained parallel tasks, and E denotes a set of messages

representing communications and precedence constraints among parallel tasks. The weight on

the vertex represents the execution time of the task and the weight on the edge represents the

communication cost between two tasks. For each task in V, ti is defined as the required time to

compute vi. Similarly, eij = (vi, vj) E is defined as a message transmitted from task vi to vj, and

cij is the required time of passing the message eij  E. Please note that eij is set to zero if v,and vj

are assigned to the same processor.

Parameters Calculation and Scheduling Decisions Algorithm

Phase 1: Generate Original Task Scheduling Sequence

Precedence constraints of a set of parallel tasks have to be guaranteed by executing predecessor

tasks before successor tasks. To achieve this goal, the first step in your algorithm is to generate

an ordered task sequence using the concept of level. The level of each task is defined as the

computation time from current task to the exit task. There are alternative ways to generate the

task sequence for a DAG, we calculate the level L(vi) of task vi using equation 1:

 















otherwisetklevel

t

vL
i

isucck

i

i)(max

 i)successor(if ,

)(

)(


 (1)

The levels of other tasks can be calculated in a bottom-up fashion by recursively applying the

second term on the right-hand side of Eq. (1). Once we obtain the levels, tasks will be sorted in

ascending order of the levels and the sorted tasks form the original task scheduling sequence.

Phase 2: Parameters Calculation

The second phase in your algorithm is to calculate important parameters, which your algorithms

rely on to make scheduling decision. The important notation and parameters are listed in Table 1.

The earliest start time of the entry task is 0 (see the first term on the right side of Eq. (2). The

earliest start times of all the other tasks can be calculated in a top-down manner by recursively

applying the second term on the right side of Eq. (2).

TABLE 1 Important Notations and Parameters

Notation Definition

EST(vi) Earliest start time of task vi

ECT(vi) Earliest completion time of task vi

FP(vi) Favorite predecessor of task vi

LACT(vi) Latest allowable completion time of task vi

LAST(vi) Latest allowable start time of task vi

 






















otherwise ,)(),(maxmin

, r(i)predecesso if ,0

)(

,
kikj

vvEeEe

i cvECTvECT
vEST

jkkiji

 (2)

The earliest completion time of task vi is expressed as the summation of its earliest start time and

execution time. Thus, we have

.)()(iii tvESTvECT  (3)

Allocating task vi and its favorite predecessor FP(vi) on the same processor can lead to a shorter

schedule length. As such, the favorite predecessor FP(vi) is defined as below

.)()(,, where,)(kikjijkijiji cvECTcvECTkjEeEevvFP  (4)

As shown by the first term on the right-hand side of Eq. (5), the latest allowable completion time

of the exit task equals to its earliest completion time. The latest allowable completion times of all

the other tasks are calculated in a bottom-up manner by recursively applying the second term on

the right-hand side of Eq. (5).

   






















otherwise ,)(min,)(minmin

, i)successor(if),(

)(

)(,)(,
j

vFPvEe
ijj

vFPvEe

i

i vLASTcvLAST

vECT

vLACT

jiijjiij

 (5)

The latest allowable start time of task vi is derived from its latest allowable completion time and

execution time. Hence, the LAST(vi) can be written as

.)()(iii tvLACTvLAST  (6)

Phase 3: Scheduling Decision

The final scheduling decision will be made as follows:

1. All tasks in the same critical path will be allocated to the same processor in order to

reduce communication cost.

2. Duplicate tasks when the schedule length can be reduced.

1. v = first waiting task of scheduling queue;

2. i = 1;

3. assign v to Pi;

4. while (not all tasks are allocated to computational nodes) do

5. u = FP(v);

6. if (u has already been assigned to another processor) then

7. if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the schedule length */

8. assign u to Pi; /*duplicate u*/

9. else allocate u to Pi;

10. v = u;

11. if v is entry task then

12. v = the next task that has not yet been allocated to a computational node;

13. i++;

14. assign v to Pi;

